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data are presented in Table IV. In this case, the difference
between Z., and Z,,, increases, especially for the thicker
conductors.

3) The inner conductor is situated asymmetrically in the square
shield— B=1, S=D=0.2. As follows from Table V, the ef-
fectiveness of the proposed method is greater for the thicker
conductors.

IV. CONCLUSION

The numerical data presented in Tables I-V show that the
utilization of the SCFM with the step current density approxima-
tion makes it possible to calculate the characteristic impedance of
a different TEM transmission line with rectangular shape of the
conductors with good accuracy. For the lines with symmetry,
even the one step approximation is enough, while the general case
of an asymmetrical position of the thick inner conductor into the
shield needs the utilization of the step current densities.
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Definition of Nonlinear Reflection Coefficient of a
Microwave Device Using Describing
Function Formalism

J. OBREGON anp F. FARZANEH

Abstract — At microwaves, it is necessary to define rigorously the large
signal reflection coefficient of a nonlinear device. In this paper, the
describing function concept is applied to the power waves incident on, and
reflected by, a nonlinear element.

This method allows us to define the nonlinear reflection coefficient
(NLRC) on the power wave basis.

This NRLC is then compared with that defined on the current or voltage
basis.

Numerical calculations applied to nonlinear elements illustrate the theo-
retical results.

I. INTRODUCTION

To use nonlinear devices, one might generalize linear concepts
such as impedance, admittance, and transfer function by the
so-called describing function method [1], [2]. These quantities
would be defined for given input signals.

At microwaves, generally, the quantity measured is the reflec-
tion coefficient (or S-parameters for n-port devices). So it is
necessary to define exactly the nonlinear reflection coefficient
concept and its relation with the nonlinear impedance.
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In this short paper, we define the nonlinear reflection coeffi-
cient by application of the describing function (DF) method to
the power waves, then we compare the nonlinear reflection coeffi-
cient (NLRC) and the nonlinear impedance of the same device.
Some numerical results concerning nonlinear elements will be
given.

At microwave frequencies, what is measured is the power of
reflected or incident waves; thus, one obtains by direct measure-
ment the reflection coefficient (S-parameters) [5]. So we should
define the describing function in terms of incident and reflected
waves. The definitions of the incident and reflected waves at the
device terminals are

o)+ Zyi(r)
a(t)————z‘/z—o (1)
b(1)= v(t)— Zyi(1) @)

2y,
where Z, is the reference impedance, and i and v are instanta-

neous current and voltage in the device.
In a linear circuit, the reflection coefficient is defined as

B

where F stands for Fourier Transform which can be also ex-
pressed as

Z(0)-Zy _ Yy~ Y(w)

M) =2z, " T, 7(0)

4)
but this does not hold for the nonlinear case.

II. NONLINEAR RESISTANCE
Let us suppose that the instantaneous relation between i and v
(for a purely resistive device) is i = f(v).
Substituting into {1] and [2], we obtain

_v+Zf(v)
a(t) YA Z
b(1)= =20 )

2VZ,
b and a are parametrically related; one can then draw the
characteristic curve and obtain

b=g(a). (6)
By application of the describing function method, one can seck
a linear approximation of this relation by putting

I 71 (8(a)=Tw-a)) dr = (7)

'y is immediately deduced as

fOTag(a) dt
n=—FF7" (8)

fOTazdt

B=Ty. 4

where B and A are amplitudes of the reflected and incident
waves.

and one can write
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Fig. 1. (a) Schematic representation of the nonlinear resistance describing
function mechanism. (b) Schematic representation of the nonlinear conduc-
tance describing function mechanism. (c) Schematic representation of the
nonlinear reflection coefficients describing function mechamsm.

It should be noted that this definition for the nonlinear reflec-
tion coefficient supposes that all harmonics of the reflected wave
are loaded by the characteristic impedance Z; (see Fig. 1 in which
the blocks are bandpass filters centered at the frequencies indi-
cated).

Equations (5) through (8) represent the basis for the calculation
of the NLRC. Moreover, (5) shows that if v(7) is sinusoidal, a(7)
will not be sinusoidal. We can then define another nonlinear
reflection coefficient on a sinusoidal input voltage basis; that is,
first calculate the effective conductance Y, (or resistance), and
then put

Y,-7,
Yt Y,

)

Obviously, this reflection coefficient would be different from
NLRC since in the first one we suppose v(?) sinusoidal and in
the latter case we suppose a(?) sinusoidal. A practical case in
which I'y; is useful is that of a microwave oscillator in which the
nonlinear device is loaded, through a transmission line coupled to
a dielectric resonator, by the characteristic impedance Z;. Here,
obviously, all harmonics of the reflected wave are loaded by Z,,.

-
I1NL“

III. NUMERICAL RESULTS

Several nonlinear resistances and capacitances have been tried
to find the NLRC, of which two examples are given.

A. Nonlinear Reflection Coefficient of an NL Conductance

Let us take for example a tunnel diode whose characteristic is
given by

i(v) =C1{(VT— o) u(Vy—v)+ Cz}tanhC3v+C4expCSU
(10)

453

P ’

20

0 0.5 P v
Fig. 2. The tunnel diode 7 — ¥ characterisitc.

where u(x) is the unit step function and coefficients ¥V and C, to
Cs are taken so as 1o fit a given I -V characteristic (see Fig. 2). In
our example, the following numerical values have been taken:

V=053 C,=05
C,=2  C,=1x1078

C, = 0.003
Cs=14.7.

The diode is biased at ¥,=0.3 V.

Then the relation b = g(a) is calculated numerically, and for a
sinusoidal incident wave, I'y; is calculated from (8) (see Fig. 3).

The effective conductance is calculated from the relation

fo Tiw dt
-[o T2 ar

and is given as a function of ¥}, the amplitude of sinusoidal input
voltage. Then the NL reflection coefficient, on the sinusoidal
input voltage basis, would be

-G,

A o

G, = (11)

Ty — A and I'{; — A4 curves are then compared (A4 is the ampli-
tude of the incident wave).
B. Nonlinear Reflection Coefficient of a Nonlinear Capacitance

The equation characterizing a capacitance is a ¢ — v relation
(see Fig. 4), i.e.,

q=f(v). (12)
Suppose that this is given by a polynomial approximate form
g=a0+ap+ap’+ . (13)
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Fig. 3. Comparison between the two nonlinear reflection coefficients calcu-

lated for the tunnel diode. 1) Obtained from b — a linearization. 2) Obtained
from the effective conductance.

Now, the describing function of g is immediatély found to be

—VT 4
gne = a1+a27+a3—_f/;2—+--~ v (14)
where
- 1 rT
o n
14 T.[O v" dt.
For a sinusoidal input voltage v = Vsin wt
3
qNL=(a1+Za3V02+"')U (15)
and
. dany _ 3 2 dv
== -—(a1+4a3V0 + )Z
i= (a1+%a3V02+ -~-)V0wcoswt. (16)
To find the reﬂectioh coefficient we calculate a and b
a(r) % in(wr+¢) 17
=—————sin(w :
2/Z, cos ¢ (17)
by the same way
Vi
b(t)= —="—sin(wr— 1
(0= 3 T eag (0 =9) (18)
where
¢=tm"’ZOw(a1+%a3%2+ ) (19)
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Fig. 4. Phase shift of the reflected wave from the nonlinear capacitance as
calculated by two methods. 1) Q- V linearization. 2) Direct solution of the
differential equation.

Then

1“;%=§=1 /=24

This is the nonlinear reflection coefficient for a sinusoidal
input (its amplitude is always equal to unity).

Sinusoidal incident wave; a(t)= A-sin wt: The current in the
nonlinear capacitance is

i=f ()% (20)
given
;=8 b '
VZy
and
v="(a+ b)\/Z_O.

Inserting into (20), we obtain

db a—b da 1)

iz {(a+b)Z,)

This is a simple differential equation of the form y’ = f(x, y),
which can be solved numerically to find 5(¢). The phase between
the incident and the periodic reflected wave gives the phase angle
of the reflection coefficient I'y, . Its modulus is given by

Amplitude of 5(r) fundamental
Amplitude of a(z)

_ 2 T+ .
IFNLl—&TAoifrl b(t)sinwedr.

[Tnel=

(22)
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C. Numerical Example

A nonlinear capacitance of the Schottky barrier is taken with

the
Q=y2eqN,(V, - V) (23)

numerical example: Q = 2.06 X10721/0.5~V biased at V= —10
V at 10 GHz.

IV. CONCLUSION

A definition of the nonlinedr reflection coefficient based on the
application of the describing function to the power waves has
been proposed in this short paper.

Care must be taken to determine in a tircuit configuration
which is the input waveform: sinusoidal input current, sinusoidal
input voltage, or sinusoidal incident wave. As shown in the
example, discrepancies might arise between different cases. As we
have investigated by computer simulation for nonlinear elements
with odd symmetry about the operating point, these discrepancies
are small, while for nonlinear elements without symmetry (tunnel
diode in the example) they are quite important. This concludes
that while working on a network analyzer one might interchange
nonlinear resistance and nonlinear reflection coefficient concepts
in the first case, while in the latter case nonlinear reflection
coefficient on a b-a linearization basis should be used, provided
“b” harmonics are loaded by the characteristic impedance.
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Application of Boundary-Element Method to
Electromagnetic Field Problems

SHIN KAGAMI anp ICHIRO FUKAI

Abstract —This paper proposes an application of the boundary-element
method to two-dimensional electromagnetic field problems. By this method,
calculations can be performed using far féewer nodes than by the finite-ele-
ment method, and unbounded field problems are easily treated without
special additional consideration. In addition, the results obtained have fairly
good accuracy. In this paper, analyzing procedures of electromagnetic field
problems by the boundary-element method, under special conditions, are
proposed and several examples aie investigated.
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Fig. 1. Two-dimensional region R.

I. INTRODUCTION

At present, the finite-element method is widely used in many
fields. The main reason may be that, by the finite-elemént method,
it is easy to handle inhomogeneities and complicated structures.
However, it requires a large computer memory and long comput-
ing time to solve the final matrix equation. In addition, un-
bounded field problems need some additional techniques [1], {2].

Récently, the boundary-element method has been proposed,
which is interpreted as a combination technique of the conven-
tional boundary-iritegral equation method and a discretization
technique, such as the finite-element method, and which has
merits of both the above methods, i.e., the required size of the
computer memory being small and the obtained results having
fairly good accuracy [3], [4]. Namely, the boundary-element
method is a boundary method and, therefore, if the region to be
analyzed is homogeneous, then it requires nodes, necessary for
calculation, on its boundary only. So the problem can be tréated
with one less dimension. Moreover, it can handle unbounded
field problems easily, so that it is suitable for the electromagnetic
field analysis which often includes unbounded regions [5], [6].

In this paper, a formulation of two-dimensional electromag-
netic field problems by the boundary-element méthod and its
application to several interesting cases, such as the problem of
clectromagnetic waveguide discontinuities, multi-media problems,
and electromagnetic wave scattering problems [6]. In addition,
several examples are analyzed and the results obtained with the
boundary-element method aré compared with rigorous ones, and
solutions of the other numerical methods. The ptopriety of our
analyzing procedure of the boundary-element method is verified.

II. GENERAL FORMULATION

A two-dimensional region R enclosed by a boundary B, as
illustrated in Fig. 1, is considered. In the region R, Helmholtz’s
equation

(V24 k>)u=0 1)
holds, where u is the potential used for analysis, we write its

outward normal derivative as ¢, and k denotes the wavenumber
in free space. The boundaty condition on B is

u=1u 2)
or

a=7 3)
where “~” means a known value. Here; Green’s function

w= = G H (kr) @)

is introduced, where H{® is the Hankel function of the second
kind and order zero. By the method of weighted residuals [3], [4]
or Green’s formula, the following equation is obtained:

u,+_/;guq*dc='/;3qu*dc. (5)
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