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data are presented in Table IV. In this case, the difference
between Z,,eP and Z~,,n increases, especially for the thicker
conductors.

3) The inner conductor is situated asymmetrically in the square
shield— B =1, S = D = 0.2. As follows from Table V, the ef-
fectiveness of the proposed method is greater for the thicker
conductors.

IV. CONCLUSION

The numericaf data presented in Tables I-V show that the
utilization of the SCFM with the step current density approxima-
tion makes it possible to calculate the characteristic impedance of
a different TEM transmission line with rectangular shape of the
conductors with good accuracy. For the lines with symmetry,
even the one step approximation is enough, while the general case
of an asymmetrical position of the thick inner conductor into the
shield needs the utilization of the step current densities.
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Definition of Nonlinear Reflection Coefficient of a

Microwave Device Using Describing

Function Formalism

J. OBREGON AND F. FARZANEH

Abstract —At microwaves, it is necessary to define rigorously the large

signal reflection coefficient of a nonlinear device. In this paper, the

describing fnnction concept is applied to the power waves incident on, and

reflected by, a nonlinear element.

This method allows us to define the nonlinear reflection coefficient

(NLRC) on the power wave basis.

This NRLC is then compared with that defined on the current or voltage

basis.

Numerical calculations applied to nonlinear elements illustrate the theo-

retical results.

I. INTRODUCTION

To use nonlinear devices, one might generalize linear concepts
such as impedance, admittance, and transfer function by the
so-called describing function method [1], [2]. These quantities
would be defined for given input signals.

At microwaves, generally, the quantity measured is the reflec-
tion coefficient (or S-parameters for n-port devices). So it is
necessary to define exactly the nonlinear reflection coefficient
concept and its relation with the nonlinear impedance.
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In this short paper, we define the nonlinear reflection coeffi-
cient by application of the describing function (DF) method to
the power waves, then we compare the nonlinear reflection coeffi-
cient (NLRC) and the nonlinear impedance of the same device.
Some numericaf results concerning nonlinear elements will be
given.

At microwave frequencies, what is measured is the power of
reflected or incident waves; thus, one obtains by direct measure-
ment the reflection coefficient (S-parameters) [5]. So we should
define
waves,
device

where

the describing function in terms of incident and reflected
The definitions of the incident and reflected waves at the
terminals are

U(t)+zoi(t)
a(t)=

2&

b(t)=
U(z)–zoi(r)

2g

(1)

(2)

Z. is the reference impedance, and i and v are instanta-.
neous current and voltage in the device.

In a linear circuit, the reflection coefficient is defined as

F{ b(t)}

‘(u)= F{a(t)}
(3)

where F stands for Fourier Transform which can be also ex-
pressed as

r(@)=
z(tJ–zo _ YO– Y((A))

Z(6J)+Z0– YO+Y((J)

but this does not hold for the nonlinear case,

II. NONLINEAR RESISTANCE

(4)

Let us suppose that the instantaneous relation between i and v
(for a purely resistive device) is i = ~(u).

Substituting into [1] and [2], we obtain

I)+zof(u)
a(t)=

2fi

b(t)=
U–zof(l,l)

2A “
(5)

b and a are parametrically related; one can then draw the
characteristic curve and obtain

b=g(rz). (6)

By application of the describing function method, one can seek
a linear approximation of this relation by putting

JoT+{d”)-rNL””)}2d’=o
rNL is immediately deduced as

and one can write

(7)

(8)

B = rNLA

where B and A are amplitudes of the reflected and incident
waves.
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Fig. 1. (a) Schematic representation of the nonlinear resistance describing
function mechanism. (b) Schematic representation of the nonlinear conduc-
tance describing function mechanism. (c) Schematic representation of the
nonlinear reflection coefficients describing function mechamsm.

It should be noted that this definition for the nonlinear reflec-
tion coefficient supposes that all harmonics of the reflected wave
are loaded by the characteristic impedance 20 (see Fig. 1 in which
the blocks are bandpass filters centered at the frequencies indi-
cated).

Equations (5) through (8) represent the basis for the calculation

of the NLRC. Moreover, (5) shows that if u(t) is sinusoidal, a(t)
will not be sinusoidal. We can then define another nonlinear
reflection coefficient on a sinusoidal input voltage basis; that is,
first calculate the effective conductance Y, (or resistance), and
then put

Y. – Ye
r~L. —.—.—.—

YO+Y, ”
(9)

Obviously, this reflection coefficient would be different from
NLRC since in the first one we suppose u(t) sinusoidal and in
the latter case we suppose a(t) sinusoidal. A practical case in
which r~~ is useful is that of a microwave oscillator in which the
nonlinear device is loaded, through a transmission line coupled to
a dielectric resonator, by the characteristic impedance 20. Here,
obviously, all harmonics of the reflected wave are loaded by 20.

III. NUMERICAL RESULTS

Several nonlinear resistances and capacitances have been tried
to find the NLRC, of which two examples are given.

A. Nonlinear Reflection Coefficient of an NL Conductance

Let us take for example a tumel diode whose characteristic is
given by

i(u) =C1{(V~– u)2u(V~– u)+ C2}tanhC3u +C4exp C5u

(10)
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Fig. 2, The tunnel diode I – V charactensitc,

where u(x) is the unit step function and coefficients VT and Cl to
C5 are taken so as 10 fit a given I- V characteristic (see Fig. 2). In
our example, the following numerical values have been taken:

VT= 0.53 c1 = 0,5 C2 = 0.003

C3= 2 C4=1X10-S C5=14,7.

The diode is biased at ~ = 0.3 V.
Then the relation b = g( a) is calculated numerically, and for a

sinusoidal incident wave, r~~ is calculated from (8) (see Fig. 3).
The effective conductance is calculated from the relation

J
T.

IV dt

G,=+

/
V dt

o

(11)

and is given as a function of V., the amplitude of sinusoidal input
voltage. Then the NL reflection coefficient, on the sinusoidal
input voltage basis, would be

Y. – G,
r~L’ —

YO+G,’

r ~L - A and rfi~ – A curves are then compared (A is the ampli-
tude of the incident wave).

B. Nonlinear Reflection Coefficient of a Nonlinear Capacitance

The equation characterizing a capacitance is a q – v relation
(see Fig. 4), i.e.,

q= f(v). (12)

Suppose that this is given by a polynomial approximate form

ll=alu+ a2v2+a3v~ +”””. (13)
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Fig. 3. Comparison between the two nonlinear reflection coefficients calcu-
lated for the tunnel diode. 1) Obtained from b – a linearization. 2) Obtained
from the effective conductance.

Now, the describing function of q is immediately found to be

( -P ~

)qNL= ~~+a2=+&3~+... V

V2 V2

where

~=1 T

J70
V“ dt.

For a sinusoidal input voltage u = VOsincot

( )
qNL= al+:a~~z +””” u

and

_&=

(

3

)

dv

‘– dt
al-t ja3V02 +... —

dt

(

3

)
i= al + ~a3V02+ . . . VOUCOSCJt.

To find the reflection coefficient we calculate a and b

&
a(t)=

2g Cos+
sin(ut +@)

by the same way

b(f)= ~
2&cos(p

sin(ut–q)

where

( )
@=tm’-]ZOti al+~a3~2+ ... .

(14)

(15)

(16)

(17)

(18)

(19)
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Fig. 4, Phase shift of the reflected wave from the nonlinear capacitance as
calculated by two methods. 1) Q – V linearization. 2) Direct solution of the
differential equation.

Then

r&=; =l/-2+.

This is the nonlinear reflection coefficient for a sinusoidal
input (its amplitude is a[ways equal to unity).

Sinusoidal incident wave; a(t) = A. sin ut: The current in the
nonlinear capacitance is

given

and

tI=(a+ b)@.

Inserting into (20), we obtain

&= a–b da

‘r Zof’{(a+b)@j’} ‘~”

(20)

(21)

This is a simple differential equation of the form y; = ~(x, y),
which can be solved numerically to find b(t). The phase between
the incident and the periodic reflected wave gives the phase angle
of the reflection coefficient r NL. Its modulus is given by

Amplitude of b ( t) fundamental
lr~Ll =

Amplitude of a ( t)

lrNLl = +~, ‘+ ’’b(t) sinutdt. (22)
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C. Numerical Example

A nonlinear capacitance of the Schottky barrier is taken with
the

Q=~2fqNd(fi -V) (23)

numericaf example: Q = 2.06X 10-12 ~~ biased at V= – 10
V at 10 GHz.

IV. CONCLUSION

A definition of the nonlineti reflection coefficient based on the
application of the describing function to the power waves has
been proposed in this short paper.

Care must be taken to determine in a circuit configuration
which is the input waveform: sinusoidal input current, sinusoidal
input voltage, or sinusoidal incident wave. As shown in the
example, discrepancies might aiise between different cases.As we
have investigated by computer simulation for nonlinear elements
with odd symmetry about the operating point, these discrepancies
are small, while for nonlinear elements without symmetry (tunnel
diode in the example) they are quite important. This concludes
that while working on a network analyzer one might interchange
nonlinear resistance and nonlinear reflection coefficient concepts
in the first case, while in the latter case nonlinear reflection
coefficient on a b – a linearization basis should be used, provided
“b” harmonics are loaded by the characteristic impedance.
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Application o~ Boundary-Element Method to

E1ectroma&netic Field Problems

SHIN KAGAMI AND ICHIRO FUKAI

Abstract —This paper proposes an application of the honndary-element

method to two-dimensional electromagnetic field problerhs. By this method,

calculations can he perforated using far fewer nodes than by the finite-ele-

ment method, and unbounded field problems are easily treated without

special additional consideration. In addiiion, the results obtained have fairly

good accuracy. In tftis paper, analyzing procedures of electromagnetic field

problems by the boundary-element method, under spceial conditions, are

proposed and several examples are investigated.

Manuscript recewed April 15, 1983: revised October 12, 1983.
S. Kagarni M with the Department of Electrical Engineering, Asahikawa

Techmcal College, Asahikawa, Japan 070.
I Fukai is with the Department of Electrical Engineering, Faculty of En-

gineering, Hokkaido University, Sapporo, Japa~ 060,

aR B

Fig, 1. Two-dimensional region R

I. INTRODUCTION

At present, the finite-element method is widely used in many
fields. we main reason maybe that, by the finite-element method,
it is easy to hand Ie inhomogeneities and complicated structures.
However, it requires a large computer memory and long comput-
ing time to solve the final matrix equation. In addition, un-
bounded field problems need some additional techniques [1], [2].

Recently, the boundary-element method has been proposed,
which is interpreted as a combination technique of the conven-
tional boun&ry-iritegral equation method and a discretization
technique, such as the finite-element method, and which has
merits of both tht above methods, i.e., the required size of the
computer memory being small and the obtained results having
fairly good accuracy [3], [4]. Namely, the boundary-element
method is a boundary method and, therefore, if tie region to be
analyzbd is homogeneous, then it requires nodes, necessary for
calculation, on its boundary only. So the problem can be treated
with one less dimension.. Moreover, it cad handle unbounded
field problems easily, so that it is suitable fdr the electromagnetic
field analysis which often includes unbounded regions [5], [6].

In this paper, a formulation of two-dimensional electromag-
netic field problems by the boundary-element method and its
application to severaf interesting cases, such as the problem of
electroma@etic waveguide discontinuities, multi-media problems,
and electromagnetic wave scattering problems [6]. In addition,
severaf examples are analyzed and the results obtained with the
boundary-element method are compared with rigorous ones, and
solutions of the other numericaf methods. The pro~riety of our
analyzing procedure of the boundary-element method is verified.

II. GENERALFORMULATION

A two-dimensional region R enclosed by a boundary B, as
illustrated in Fig. 1, is considered. In the region R, Helmholtz’s
equation

(v2+k*)u=o (1)

holds, where u is the potential used for analysis, we write its
outward norrnaf derivative as q, and k denotes the wavenumber
in free space. The boundaty condition on B is

~=~ (2)

or
q=q (3)

where “-” means a knctwn value. Here; Green’s function

u*= – ~H~2)(kr) (4)

is introduced, where H$’) is the Hankel function of the second
kind and order zero. By the method of weighted residuals [3], [4]
or Green’s formula, the following equation is obtained:

u, +
J J

uq*dc= qu*dc.
B B

(5)
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